Brute-Forcing Evolution:
Optimizing Win Distributions with Iterative
Weighted Sampling

Carrot Gaming
Declan Armstrong

1 Discrete Outcome Random Draw

In traditional online slot machines, the back-end code is responsible for gener-
ating results for the front end in real time. The Carrot Gaming solution uses a
different approach. This is often referred to as a "lookup tables’ or pre-generated
results approach, which uses a predefined set of outcomes stored in a database.
The game result selection process is analogous to a random draw with replace-
ment.

Using the random draw approach, a large number of possible outcomes are
generated (typically between 500,000 and 1,000,000) independently for each
mode within a game. A database stores the instructions for all possible game
rounds, along with a lookup table, which is a single file containing a simulation
number, weight, and final payout multiplier. Each time a bet is placed, the
Remote Game Server (RGS) selects a specific simulation number with a proba-
bility proportional to its assigned weight. The game logic for this simulation is
then returned in JSON format by querying a database for the given simulation
number, which is then passed to the front-end for visualizing gameplay.

In order to select a result, a random integer value is selected using Golang’s
crypto/rand standard library package to generate a value on the closed interval
[0, sum(LUTweights) — 1]. This weighted draw method means that we are able
to explicitly calculate the Return To Player (RTP) for a game by computing
the dot-product of the payout and weight,

N
1
RTP = W;wﬂ?i, (1)

where w; is the weight of a specific simulation, p; is the payout multiplier for this
simulation number and W is the sum of the weights for all possible outcomes.



Gowe ID
=) =
Mode 1
> (ke )<
SNgy
[]

—> (e

Figure 1: Game information structure

2 Optimization Algorithm

The algorithm described here is capable of balancing win distributions of finitely
constructed mathematical models. When results are initally simulated, all pos-
sible outcomes are assigned a weight of ‘1’ such that any unique simulation
is equally likely to be chosen. The purpose of this algorithm is to reassign
weights for each unique payout such that the discrete set of solutions result in
a weighted distribution with the correct RTP, while biasing outcomes to make
payouts within a specified range more desirable. Because of this assignment, the
initial lookup-table does not have to be balanced (you can more or less pass any
RTP lookup table to it and it will still output the desired RTP). In practice,
then idea is that the starting point is relatively close to the desired RTP, in
order to avoid assigning excessive weighting to any single outcome. If the RTP
is far too high, when playing the game the player may notice situations where
a board appears ‘primed’ but never results in a win. For example, seeing very
high multipliers or prizes that then fail to connect.

2.1 Evolutionary Process

The core of this optimization process is the balancing of overpaying and under-
paying distributions, ensuring that the final combined distribution meets the
desired Return to Player (RTP). The process can be visualized as blending two
opposing forces to reach equilibrium. Ultimately, this process is an evolution-
ary algorithm that takes in two inputs, one where the RTP is greater than the
target value and one where the output is lower than desired. Given these two
distributions with the same payout values, a balanced distribution can always
be generated by performing a weighted average of the ‘over’ and ‘under’ dis-
tributions. Given balanced with distribution (7), a ’positive’ distribution (P)
where the average win satisfies P > 7T, and a ‘negative’ distribution, N' < T we



® positive
® negative
® combined

0.0010

0.0008

0.0006

0.0004

Payout Probability

0.0002

0.0000

200 400 600 800 1000
Payout Multiplier

Figure 2: Win distribution balanced to 97% Return To Player (RTP), generated
by combining distributions with greater than (positive) and less than (negative)
the target RTP for a game with a bet-cost of 100x.

can solve,
T=xz-N+(1-2)P, (2)
where the weighting, z 3 (0,1).
T-N
TEPIN ®)

Weighting the sum of the positive and negative distributions by this factor solves
the RTP more or less exactly, as demonstrated in Figure 2.

The real crux of the problem comes with how these positive and negative dis-
tributions are generated. This is done by brute-forcing random weights for win
distributions which satisfy certain statistical properties that well-performing
slot games tend to abide by. But generally speaking, we do this by generating
many trial distributions which consist of summing Gaussian curves. Recalling
the structure of a Gaussian is of the form,

1

g(m)ZA\/%*eXp(— (8, (4)

g

where ¢ is the standard deviation, p is the distribution mean, x is the co-
ordinate on the distribution axis (the payout amount here for an ordered win
distribution) and A is some scaling factor.

We start by selecting a random number of Gaussian curves (N) we want to
combine (typically between 5 and 15). For each of these distributions we also
assign random values for the amplitudes, means and standard deviations. We



do this because Gaussians can be conveniently added together to form another
unique curve described by the parameter set:

A; =[A1, A, ... AN,
oO; = [017025"'a0N]7

Hi = [/’[/17/1/27"'7/’[/N]~

Once these parameters are selected, we write the form of our trial distribu-
tion, with a minimum integer weight of ‘1’ assigned to each payout, as

e (5 (). (5)

Leaving out distribution fitness criteria (which will be discussed later), we
could simply ask the question of whether G(Z) has an expected return of >
|| < the target RTP, where Z is the set of all possible game payouts. We can
continuously create these distributions until we have sufficiently many positive
and negative distributions which can iteratively combine. By taking Gn (Z) as
the function producing weights which satisfy, E(G(Z)) < T and Gp(Z) as the
function resulting in E(G(Z)) > T with E() is the expectation value of the
distribution. We create a balanced distribution by concatenating the Gaussian
parameters with amplitudes weighted by Eq. 3 to obtain the new parameter set
used to create an optimised distribution,

N
Gx)=1+> A
i=1

1—2x)
Ap = | = [Ap1, Apa, ..., A ]+[(A,A,...,A
T ZiAPi[ 1, Ap2 N] ZiANi[ 1, A2 N]
UT:[UP170P27"'70PN]+[UNlaoNQa"'7UNN]7

KT = [Mm,/lm, .- ~,NPN] + [/1/\/1,#/\/27 cee ,/iNN]~

In practice, these parameters should be selected to correspond to reasonable
solutions to slot game mechanics. Such as ensuring that the probability of select-
ing a value for p decreases proportionality as the value strays further from the
target mean. All we really want to start checking for at this stage is if the dis-
tribution generated is above or below the target RTP (as a minimum condition).

By deconstructing the above balanced, combined distributions we can see
the individual Gaussian curves which constitute the final win distribution in
Figure 3.

2.2 Acceptance Criteria

If we carefully select our Gaussian parameters such that we tend to generate
equal numbers of positive and negative distributions, we can quickly obtain
many possible trial solutions. Though we want to put some constraints on
which are acceptable. The list of requirements can become quite substantial,
such as enforcing hit-rate ranges for particular payouts or performing a Mean



0.00025

0.00020

0.00015

0.00010

Payout Probability

0.00005 +

0.00000

100 200 300 400 500
Payout Multiplier

Figure 3: All Gaussian curves constituting the balanced distribution are shown,
each with unique amplitudes, standard deviations and means.

Square Error analysis on some ideal or distribution. To keep things general, we
will look at a simple measure of volatility by comparing the distribution mean
and median ratios.

The user should define the limits on these values which will depend on how
they want the game to feel. One method we have utilised is by taking the
ratio of the mean payout with the median payout. Where we define the median
payout to be the payout multiplier within an ordered win distribution where the
cumulative probability is >= 0.5. Generally speaking, the larger the value of
mean/median, the more volatile the game will feel. As large ratios are indicative
of right-skewed distributions with more probability being assigned to extreme
payouts. Conversely the smaller this value, the more probability is shifted to
lower payouts leading to left-skewed distributions where more of the distribution
probability is clustered around smaller, but more frequent payout amounts closer
to the distribution expected value.

2.3 Ranking Methods

A consideration when selecting win distributions is the macro-scale payout prob-
abilities. We can run simulations for many test players to study the expected
player balances after a given number of spins. One strategy discussed here con-
siders distribution volatility by maximising the chances of a players final balance
exceeding some predefined after a fixed number of spins.

To do this we can setup simulated players, typically several thousand, with a
large arbitrary starting balance. We then perform a weighted random draw for
N spins. After each draw, the players bank balance is updated to reflect the cost
of the bet and payout multiplier. The value of N should be selected to represent
a realistic number of spins a player is likely to perform. Say, for example, we



investigate a game and determine that the average number of spins a player
performs is 150 spins. We are interested in looking at what the probability is
of a player ending an average playing session with a bank balance >= their
starting balance (100% RTP). We could investigate any final balance, say 1.5
or 2.0 times their starting balance depending on how we want the game to play.
Generally larger values will preference distributions with larger, more sporadic
payouts.

final_balance = []

for player in range(n_players):
balance = starting_balance
spin_balance = []

for spin in range(N_spins):
balance -= bet_cost
payout = weighted_random_draw(payouts, weights)
balance += payout
spin_balance.append(balance)

final_balance.append(spin_balance)

For every spin, we can now look at the ratio of players who have a balance
>= their starting balance over the total number of players, such as in Figure 4.

2.4 Sub-Game-Type Optimization

Much of the power from this optimization algorithm comes from being able
to accurately assign hit-rates, probabilities, or average wins to specific game
properties. Given that

Where M (z) is the average payout of some event z, R is the RTP contribution
of this event occurring and p is the probability of this event. Given two of these
three variables, we apply the evolutionary algorithm on these isolated events
and recombine the assigned probabilities to create a configurable win distribu-
tion.

For example, if we want to consider a game where we have 60% RTP al-
located to the base-game and 37% RTP allocation to the free-game, we can
identify which simulations result in a free-game entry and apply the evolution-
ary algorithm separately to both sets of simulations. These simulation events
must be mutually exclusive and the problem essentially reduces to optimizing
the base-game simulations (where there are no free-game triggers) to 0.60 RTP
and the free-game simulations to 0.37 RTP. Then by enforcing that the sum of



0.35 - T r s S
IR LA ¥ i

030 - oo
E .0
o o
8 0.25-
1 o
w5 0.20 J,,J'
> :
S 0.15 1
3 '
-8 I
£ 010

1 T 1
20 40 60 80 100 120 140
Spin Number

.
.
.
s
0054 *
.
[}
0

Figure 4: Average probability of a given player being >= 1.0 RTP for a 1x
base-game spin using a 0.97 RTP distribution.

all weights are normalised by Zf\i_ol w; = 1 we can retrieve a lookup table with

well defined RTP, hit-rates or average wins for specific events.

In this example we have only considered a base-game and free-game split,
but in practice we may want to enforce a specific hit-rate for 0-wins, max-wins
or multiple bonus conditions. By applying the process described in Section 2.1
many times, we end up with many balanced base-game distributions and equally
as many free-game distributions. Since all of these sections are balanced, we can
iteratively (or randomly) select balanced distributions for each of these sections
and test the overall statistical properties after combination. This provides us
with many unique payout-weight distributions to test.

2.5 Forced Parameter Scaling

Another powerful feature of this optimization algorithm is the ability to bias
selected distributions to preference certain payout ranges (Piower, Pupper). We
can define a payout range, scaling factor, and probability of applying this factor
to a randomly chosen sum of Gaussian curves. Once the combined Gaussian
has been constructed and before the distributions are split into the positive and
negative categories we can multiply the probabilities within a specified payout
range by some constant factor,

*_

Wy

C* Wp if Plower <=p <= DPupper



where C is a user defined scaling parameter and w,, is the weight associated with
the unique payout multiplier (p). This scaling can either be > 1 to increase the
assigned probability with the specified range or < 1 to decrease the likelihood
of payouts within the chosen range.

2.6 Pseudo-random parameter estimation

Given the brute-force approach there is generally a random-noise term (£) added
to each parameter to ensure a diverse range of possible solutions,

=+ &1,
o — 0+ &,

The principle behind how Gaussian parameters are chosen is outlined briefly
below.

2.6.1 Mean Distribution Values: p

We would like to predominantly select functions whose mean is near that of the
target mean, where the likelihood of selecting a u is proportional to the relative
distance |7 — p|. The mean will be constrained to values >= 0 and <= Max(x).

2.6.2 Distribution Standard Deviations ¢

The variation in the distribution about mean should not be overly narrow such
that the assigned weight is disproportionality applied to a small win range
(which would manifest as a narrow spike in the payout-probability distribution
plot). We are interested in having an equal number of positive and negative
distributions. Since the RTP is particularly sensitive to o, we generally select a
starting value for o and if we observe significantly more distributions to be pos-
itive compared to negative (or vice-verse), we vary this value until the number
of viable positive and negative distributions balance out.

2.6.3 Distribution Amplitudes A

The selected amplitude should again be proportional to the mean distribution
value such that we expect that more significant weighting is assigned to Gaus-
sians whose mean is close to that of the target distribution.



	Discrete Outcome Random Draw
	Optimization Algorithm
	Evolutionary Process
	Acceptance Criteria
	Ranking Methods
	Sub-Game-Type Optimization
	Forced Parameter Scaling
	Pseudo-random parameter estimation
	Mean Distribution Values: 
	Distribution Standard Deviations 
	Distribution Amplitudes A



